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Structure and rheology of semidilute suspension under shear
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We study the structure and viscosity of a semidilute colloidal suspension under stationary shear.
For a model hard-sphere suspension with no hydrodynamic interactions we obtain accurate results
for the low-density limit of the steady-state structure factor and shear-rate-dependent viscosity

coefficients.

In contrast with predictions of the earlier theories, we find a nonzero distortion of

the structure factor in the plane perpendicular to the flow direction. The observed changes of the
structure factor are correlated with shear thinning of the suspension.

PACS number(s): 82.70.Dd, 47.50.4d, 47.15.Pn, 51.20.4+d

A pioneering work of Clark and Ackerson [1] has been
followed by a number of interesting experimental and the-
oretical investigations of shear-induced distortion of the
structure factor [2,3] in colloidal suspensions. Among the
most important theoretical approaches are those of Ronis
[4], Dhont [5], and Schwarzl and Hess [6]. All these the-
ories involve approximations: Ronis uses a phenomeno-
logical approximate method of fluctuating diffusion equa-
tion; Schwarzl and Hess introduce a one-relaxation-time
approximation into the Kirkwood-Smoluchowski equa-
tion; and Dhont’s solution of the two-particle Smolu-
chowski equation is also approximate.

Many features of the experimental data are qualita-
tively reproduced by the above theories [7]. However,
none of the theories reproduces a nonvanishing distortion
of the structure factor in the plane perpendicular to the
flow direction. Such a distortion has been found both in
experiments [8,9] and in Brownian-dynamics simulations
[10].

In this paper we present an accurate solution of the
two-particle Smoluchowski equation for a simple suspen-
sion model. Owur calculations yield a nonzero distor-
tion of the structure factor in the plane perpendicular to
the flow, in accordance with the experimental findings.
Our conclusion is that a zero distortion in Dhont’s (5],
Schwartzl and Hess’s [6], and Ronis’s [4] theories results
from approximations involved.

We consider a suspension of particles interacting via
a hard-sphere potential, with no hydrodynamic inter-
actions. Such a suspension can reasonably be used as
a first-approximation model for a charge-stabilized col-
loidal system. The effective particle diameter should be
set equal to the particle separation at which the inter-
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action energy is of the order of kgpT. The steady-state
structure factor is calculated in the low-density limit, by
a combination of analytical and numerical methods. We
also present results for the two-body contributions to the
shear-rate-dependent viscosity coefficients. We find that
with increasing shear rate the suspension undergoes shear
thinning correlated with the structural changes indicated
by the nonzero distortion of the structure factor in the
plane perpendicular to the flow.

The suspension undergoes a steady shear flow of the
form

v(r) = yyé., (1)

where « is the shear rate and &, is the unit vector in the
z direction. The suspension is statistically uniform with
mean number density n. The particle volume fraction is
denoted by ¢ = n4ma®/3, where where a is the particle
radius. In addition to the convective drift, suspended
particles perform Brownian motion, with the diffusion
constant of an isolated particle Dy. The magnitude of
the influence of the shear flow on the structure of the
suspension is characterized by the Péclet number Pe =
~va?/Dy.

In the low-density limit the shear-induced distortion
of the pair distribution §g = g — g°? can be determined
from the stationary two-particle Smoluchowski equation.
For our model the Smoluchowski equation written in the
relative-position coordinates r takes the form

— V- [-2DoV + vyyé.]dg(r) = 0 for r > 2a, (2)

with the boundary condition
t-[-2DgV + vyé,]dg(r) = —2av&§ at 7 = 2a, (3)

where £ =r/r.

We construct the solution of Egs. (2) and (3) by the
induced-sources method. Namely we consider the solu-
tion of (2) generated in the whole space by a set of mul-
tipole sources inserted at r = 0. The strength of the
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sources is adjusted to fulfill the boundary condition at
r = 2a. The solution constructed in this way is identical
to the pair distribution dg for r» > 2a.

We start from defining a set of solutions T,3 to Eq. (2),
J

Pel/z
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corresponding to multipole sources (8/9z)*(8/0y)P4(r).
The functions T,g can be obtained from the fundamental
solution of Eq. (2), found by Erlick [11]. They are given
by the following equation:

T dt A\ (o a\"* Pe (z — 15y)2 2 2
[e? - . . . 4
o) 32w%/2aDo /o (14 Le2)V/? 4372 (c’)m) (ay 2 3:c> exP{ 16a2t [ 1+ L2 Ty 2 (4)

We express the pair distribution g as a linear combi-
nation of T,g:

o0

dg(r) = Z C*P T,p(r) for r > 2a. (5)
,3=0

The coefficients C*? are determined by the boundary
condition (3). To derive explicit equations for C*? we
expand the left-hand side of (3) into spherical harmonics.
We define the expansion coeflicients jgg(r):

oo l
£ [~2DoV +7y8:] Tap(r) = D, Y deg(r)Yim(#).
=0 m=—

(6)

The boundary condition can be then rewritten as a set
of linear equations for C#:

3 33(20)C%® = Ayabay (bom — 6-2,m),  (7)
a,B=0

where A = 24 (2m/15)/2,

Equations (4)—(7) have been approximately solved by
considering a sequence of truncations obtained by setting
JZB =0if a+ 8 > lpax or I > lnax- We have used lax =
10 at Pe = 12.5; for Pe < 2 the truncation at ln.x = 4
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FIG. 1. Distortion [S(k,Pe) — S°I(k)]/¢ of the reduced
steady-state structure factor from its equilibrium form, along
the dilatation axis k = k(é. + &,)/v2, for the Péclet num-
ber Pe = 0.5. Solid line, present theory; long-dashed line,
Dhont’s approximation [5]; dashed line, Schwarzl and Hess’s
approximation [6]; dotted line, linear-response result.

r

appears to be sufficient. The convergence was monitored
by calculating viscosity coeflicients corresponding to the
subsequent truncations.

The solution of Egs. (2) and (3) obtained in this way
has been used to calculate the distortion of the structure
factor S(k) — S°U(k) = n [dr exp(—ik - r) g(r). Our
results are presented in Figs. 1-4, along with the results
of the theories of Refs. [4-6], adopted for our model sys-
tem. Before we go on to the presentation of our findings
we briefly discuss these theories.

The starting point of Dhont’s theory [5] is the two-
particle Smoluchowski equation for continuous interpar-
ticle potentials:

—V - [-2DoV + 2BDoF(r) + vyé,] dg(r)
= ’via:geq(r)’ (8)

where 8 = 1/(kgT), the interparticle force F = —V4
with 1, the pair potential, and g°? = exp(—0v) is
the equilibrium pair distribution function. In the hard-
sphere limit v — tgs, with ¥us(r) = oo for r < 2a
and ¥us(r) = 0 for r > 2a, Eq. (8) is equivalent to the
boundary-value problem (2) and (3).

Dhont’s approximation amounts to neglecting the force
term on the left-hand side of Eq. (8). The simplified
equation can be then solved analytically in the Fourier
space. It describes independent diffusion of two particles
after initial interaction, with no further interaction taken
into account. Therefore Dhont’s approximation is equiv-
alent to the mode-mode coupling approximation applied
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FIG. 2. Distortion [S(k,Pe) — S®I(k)]/¢ of the reduced
steady-state structure factor from its equilibrium form, along
the gradient direction k = k&,. Dotted line, Pe = 0.5; dashed
line, Pe = 1; solid line, Pe = 2.
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at low densities.

The analysis of Schwarzl and Hess [6] begins with the
Kirkwood-Smoluchowski equation. In the low-density
limit discussed in the present paper the Kirkwood-
Smoluchowski equation is equivalent to Eq. (8). The
approximation of Schwarzl and Hess consists in replac-
ing the term —V - [-2DV + 2B8D¢F(r)] by the inverse
of the relaxation time 77!, a free parameter. We have
used 7 = a?/Dy when applying the theory to our model
system.

Ronis’s theory [4] is based on the phenomenological
fluctuating diffusion equation for the one-particle den-
sity. It is known that in the theory of simple fluids the
analogous approach, i.e., that of the fluctuating hydrody-
namics, gives results equivalent to the mode-coupling ap-
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proximation [12]. One can show that the same also holds
for diffusive systems [13]. As we have discussed above,
Dhont’s result is equivalent to the low-density mode-
mode coupling approximation. Therefore, in the low-
density limit Dhont’s and Ronis’s results for the structure
factor are equivalent, which can be checked by explicit
calculation.

The above theories have been used to evaluate the low-
density steady-state structure factor for our model sys-
tem. We compare the results with our accurate solution
of Egs. (2) and (3).

In Fig. 1 we show the distortion of the structure fac-
tor for Pe = 0.5, along the extensional axis k = k(é, +
&,)/v2. We compare the present solution of Egs. (2)
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FIG. 3. Contour maps of [S(k,Pe) — S°I(k)]/¢ in the gradient-velocity plane. (a) Present theory, Pe = 0.1; (b) present
theory, Pe = 2; (c) Dhont’s approximation [5], Pe = 2; (d) Schwarzl and Hess’s theory [6], Pe = 2.
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and (3) to the linear-response result [14], the approxi-
mate result of Dhont’s theory [5] (this result is equiv-
alent to that of Ronis [4]), and the one-relaxation-time
approximation of Schwarzl and Hess [6]. Even at this
rather low Péclet number there is a significant disagree-
ment of the results based on the approximate solutions
of the Smoluchowski equation with our calculations. The
theory of Dhont underestimates the distortion whereas
the theory of Schwarzl and Hess overestimates it sub-
stantially, especially for large k. (Perhaps a better fit of
Schwarzl and Hess’s approximation can be obtained by
using a shorter relaxation time.) Finally, we note that
the linear-response result describes correctly the large-k
behavior of the distortion but fails to do so for small k.
This corresponds to the small-k boundary layer behavior
of S(k), discussed by Dhont [5].

In Fig. 2 we show the distortion of the structure factor
along the gradient direction k = ké&,, for several Péclet
numbers. The approximate theories of Refs. [4-6] do not
give any distortion along this line. In contrast, we find a
nonzero distortion. The distortion is small for Pe up to
0.5, but is already significant at Pe = 2. It is interest-
ing to note that these structural changes are correlated
with the shear-thinning behavior of the suspension (see
below). In the vicinity of the first maximum of the equi-
librium structure factor the distortion is positive. This
agrees qualitatively with the Brownian-dynamics simu-
lation results [10]. The simulations, however, have been
performed at much higher densities and Péclet numbers.
Our theory yields a nonzero distortion not only in the
gradient direction but also in other directions in the plane
perpendicular to the flow.

In Fig. 3 we show the contour maps of the distortion
of the steady state structure factor for k in the gradient-
velocity plane. The results for two values of the Péclet
number Pe = 0.1 and Pe = 2 are given. At Pe = 2
our present results are compared with the predictions of
Dhont’s and Schwarz]l and Hess’s theories. At this Péclet
number the results of their theories differ considerably
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FIG. 4. Reduced structure factor [S(k,Pe) — 1] /¢. Solid
line, the equilibrium structure factor, Pe = 0; dashed line,
structure factor along the dilatation line k = k(&. + &,)/v2,
for Pe = 2; dotted line, structure factor along the gradient
direction k = k &,, for Pe = 2.

from ours. For lower Péclet numbers the difference is
smaller, but it remains nonzero even in the low-Pe limit.

In order to illustrate the relative magnitude of the
structural distortion caused by the flow we plot, in Fig.
4, the equilibrium static structure factor S°%(k), along
with S(k,Pe = 2) for k in the extentional axis direction
(&2 + &,)/V/2 and in the velocity gradient direction &,.

The steady-state pair distribution function g has been
used to evaluate the two-particle contribution crg) to the
ensemble-averaged stress tensor of a suspension under
shear. For suspension with no hydrodynamic interactions
the only nonvanishing contribution to ag) is the direct-
interaction contribution, which for hard-spheres takes the
form [14]

9kpT¢* N
o =22t / 4 a; a; g(2a), 9)

where integration is over the unit sphere and a = a&. For
the flow (1) the traceless part of the steady-state stress-
tensor can be fully characterized by three ~y-dependent
transport coefficients. Here we choose to present the re-
sults for the coefficients introduced by Hess [15]:

n =10, (10)

n® =yt (02— o) /2, (11)

@ _ - 2) 1/ 2 2
Mo " =7 ! [aiz) - 5 (O':S:z) _U:‘(l‘y))] /2’ (12)

where only the two-particle contributions have been
taken into account. In the low-shear-rate limit nf) re-
duces to the two-body contribution to the low-shear-rate
viscosity and 775_2),71(2) = O(Pe).

The dependence of the transport coefficients ngr) 7](_2 ),

2.5
2.0
)
£ 15
s,
=
2 1.0 —
A
0.5 |- e ———
ey M N B
00 05 1.0 15 2.0 25 3.0 35
(Pe)1/2
FIG. 5. Reduced viscosity coeflicients 7]52) where
i = +,—,0, defined in Eqgs. (10)—(12), plotted as functions

of v/Pe. Solid line, ¢~2 nf)/n(o); dashed line, ¢~ 2 17(_2)/7)(0);
dotted line, ¢~ 27¢? /7(®, where n® = kgT/(6m Do a).
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and 7)(()2) on VPe is shown in Fig. 5. For small Péclet
numbers 175_2) is approximately constant; for Pe above 1
the coefficient decreases significantly with the increasing
shear rate. This is in qualitative agreement with the
experimentally observed shear-thinning behavior of col-

loidal suspensions [14,16-18]. It follows from our data
that 0'3%) is the smallest diagonal element of the stress
tensor, the often observed pattern [20]. (For other theo-
retical approaches see Refs. [15] and [19-22].)

To summarize, we have shown that the the two-particle
Smoluchowski equation for a suspension under shear

J. BLAWZDZIEWICZ AND GRZEGORZ SZAMEL 48

yields a nonzero distortion of the structure factor in the
plane perpendicular to the flow direction. We find that
the structural changes are correlated with shear thinning.
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